Galerkin and Petrov-Galerkin projection-based reduced-order models (ROMs) of transient partial differential equations are typically obtained by performing a dimension reduction and projection process that is defined at either the spatially continuous or spatially discrete level. In both cases, it is common to add stabilization to the resulting ROM to increase the stability and accuracy of the method; the addition of stabilization is particularly common for advection-dominated systems when the ROM is under-resolved. While these two approaches can be equivalent in certain settings, differing techniques have emerged in both contexts. This work outlines these two approaches within the setting of finite element method (FEM) discretizations (in which case a duality exists between the continuous and discrete levels) of the convection-diffusion-reaction equation, and compares residual-based stabilization techniques that have been developed in both contexts. In the spatially continuous case, we examine the Galerkin, streamline upwind Petrov-Galerkin (SUPG), Galerkin/least-squares (GLS), and adjoint (ADJ) stabilization methods. For the GLS and ADJ methods, we examine formulations constructed from both the "discretize-then-stabilize" technique and the space-time technique. In the spatially discrete case, we examine the Galerkin, least-squares Petrov-Galerkin (LSPG), and adjoint Petrov-Galerkin (APG) methods. We summarize existing analyses for these methods, and provide numerical experiments, which demonstrate that residual-based stabilized methods developed via continuous and discrete processes yield substantial improvements over standard Galerkin methods when the underlying FEM model is under-resolved.


翻译:Galerkin 和 Petrov-Galerkin 基于静态部分差异方程式的降序预测模型(ROMs)通常通过在空间连续或空间离散水平上确定一个尺寸降序和投影过程(FEM)来获得。在这两种情况下,通常的做法是在由此产生的ROM上增加稳定性,以提高该方法的稳定性和准确性;在ROM解解度不足时,对以静态为主的系统增加稳定性是特别常见的。虽然这两种方法在某些环境下可以等同,但在两种情况下都出现了不同的技术。 这项工作概述了在设定固定元素方法(FEM)中采用的这两种方法(在空间连续连续连续或离散水平之间存在双重性)的分解和投影过程。 在空间连续的情况下,我们检查Galerkin, 精简上风Petrov-Galerkin (SUPG)、 Galerkin/East-quarres (GLS) (GLS), 以及用于我们不断开发的GLO-S-S-S-S-S-deal-deal-S-deal-de 和Outeral-de-deal-de-de-de-Seral-S-de-Servial-de-de 这两种方法。这些是这些我们持续地检验和Silal-s-de-de-de-de-de-de-de-de-de-de-de-de-de-S-de-de-de-de-de-de-de-de-de-deal-deal-deal-de-de-de-de,这些方法。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员