We provide an online framework for analyzing data recorded by smart watches during running activities. In particular, we focus on identifying variations in the behavior of one or more measurements caused by changes in physical condition, such as physical discomfort, periods of prolonged de-training, or even the malfunction of measuring devices. Our framework considers data as a sequence of running activities represented by multivariate time series of physical and biometric data. We combine classical changepoint detection models with an unknown number of components with Gaussian state space models to detect distributional changes between a sequence of activities. The model considers multiple sources of dependence due to the sequential nature of subsequent activities, the autocorrelation structure within each activity, and the contemporaneous dependence between different variables. We provide an online Expectation-Maximization (EM) algorithm involving a sequential Monte Carlo (SMC) approximation of changepoint predicted probabilities. As a byproduct of our model assumptions, our proposed approach processes sequences of multivariate time series in a doubly-online framework. While classical changepoint models detect changes between subsequent activities, the state space framework coupled with the online EM algorithm provides the additional benefit of estimating the real-time probability that a current activity is a changepoint.


翻译:我们提供了一个在线框架,用于分析智能手表在运行活动期间所记录的数据。特别是,我们侧重于查明物理条件变化(例如身体不适、长时间退训、甚至测量装置的故障)导致的一项或多项测量行为的变化。我们的框架将数据视为由物理和生物测定数据多变时间序列所代表的运行活动的序列。我们把古典变化点检测模型与数量未知的组件数与高萨州空间模型结合起来,以探测一系列活动之间的分布变化。模型考虑到由于随后的活动的顺序性质、每项活动中的自动关系结构以及不同变量之间的同时存依赖性而导致的多重依赖性来源。我们提供了在线期望-最大化(EM)算法,其中涉及按顺序排列的蒙特卡洛(SMC)对变化点预测的近似概率。作为我们模型假设的副产品,我们拟议的方法过程在双向在线框架内对多变时间序列进行排序。在古典变化模型模型模型中检测随后活动之间的变化,而州空间框架与在线EM算法结合了同时对不同变量之间的同时依赖性。我们提供了一种在线期望-最大的可能性是估计当前活动的额外好处。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员