The visual analytics community has proposed several user modeling algorithms to capture and analyze users' interaction behavior in order to assist users in data exploration and insight generation. For example, some can detect exploration biases while others can predict data points that the user will interact with before that interaction occurs. Researchers believe this collection of algorithms can help create more intelligent visual analytics tools. However, the community lacks a rigorous evaluation and comparison of these existing techniques. As a result, there is limited guidance on which method to use and when. Our paper seeks to fill in this missing gap by comparing and ranking eight user modeling algorithms based on their performance on a diverse set of four user study datasets. We analyze exploration bias detection, data interaction prediction, and algorithmic complexity, among other measures. Based on our findings, we highlight open challenges and new directions for analyzing user interactions and visualization provenance.
翻译:视觉分析界提出了几种用户模型算法,以捕捉和分析用户的互动行为,从而协助用户进行数据探索和创造洞察力。例如,一些人可以检测探索偏差,而另一些人可以预测用户在互动之前会互动的数据点。研究人员相信,这种算法的收集有助于创造更智能的视觉分析工具。然而,社区缺乏对这些现有技术的严格评估和比较。因此,关于使用的方法和时间的指导有限。我们的文件试图弥补这一缺失的缺陷,根据不同一组用户研究数据集的性能对八个用户模型进行对比和排序。我们分析了探索偏差检测、数据互动预测和算法复杂性等措施。根据我们的研究结果,我们突出强调了分析用户互动和可视化的公开挑战和新方向。