This paper approaches the unsupervised learning problem by gradient descent in the space of probability density functions. A main result shows that along the gradient flow induced by a distribution-dependent ordinary differential equation (ODE), the unknown data distribution emerges as the long-time limit. That is, one can uncover the data distribution by simulating the distribution-dependent ODE. Intriguingly, the simulation of the ODE is shown equivalent to the training of generative adversarial networks (GANs). This equivalence provides a new "cooperative" view of GANs and, more importantly, sheds new light on the divergence of GANs. In particular, it reveals that the GAN algorithm implicitly minimizes the mean squared error (MSE) between two sets of samples, and this MSE fitting alone can cause GANs to diverge. To construct a solution to the distribution-dependent ODE, we first show that the associated nonlinear Fokker-Planck equation has a unique weak solution, by the Crandall-Liggett theorem for differential equations in Banach spaces. Based on this solution to the Fokker-Planck equation, we construct a unique solution to the ODE, using Trevisan's superposition principle. The convergence of the induced gradient flow to the data distribution is obtained by analyzing the Fokker-Planck equation.
翻译:本文将无监督学习问题视作基于概率密度函数空间的梯度下降问题。其主要结论表明,在一种由分布相关的普通微分方程(ODE)所诱导的梯度流下,未知的数据分布会出现为长期极限。也就是说,可以通过模拟这种分布相关的ODE来揭示数据分布。有趣的是,ODE的模拟被证明等价于生成对抗网络(GANs)的训练。这种等价性提供了GANs的新的“合作”视角,并且更重要的是,揭示了GANs的发散现象。特别地,揭示了GAN算法隐式地最小化两组样本之间的均方误差(MSE),仅仅这种MSE拟合就足以导致GANs的发散。为构造一种解决分布相关ODE的方法,首先我们证明与非线性Fokker-Planck方程关联的微分方程在Banach空间中有唯一弱解,这是通过Crandall-Liggett定理实现的。基于这种Fokker-Planck方程的解,使用Trevisan的叠加原理构造了分布相关ODE的唯一解。分析Fokker-Planck方程并且证明导致梯度流收敛到数据分布。