In this article, we present data-driven reduced-order modeling for nonautonomous dynamical systems in multiscale media using Koopman operators. Different from the case of autonomous dynamical systems, the Koopman operator family of nonautonomous dynamical systems significantly depend on a time pair. In order to effectively estimate the time-dependent Koopman operators, a moving time window is used to decompose the snapshot data, and the extended dynamic mode decomposition method is applied to computing the Koopman operators in each local temporal domain. Many physical properties in multiscale media often vary in very different scales. In order to capture multiscale information well, the dimension of collected data may be high. To accurately construct the models of dynamical systems in multiscale media, we use high spatial dimension of observation data. It is challenging to compute the Koopman operators using the very high dimensional data. Thus, the strategy of reduced-order modeling is proposed to treat the difficulty. The proposed reduced-order modeling includes two stages: offline stage and online stage. In offline stage, a block-wise low rank decomposition is used to reduce the spatial dimension of initial snapshot data. For the nonautonomous dynamical systems, real-time observation data may be required to update the Koopman operators. The online reduced-order modeling is proposed to correct the offline reduced-order modeling. Three methods are developed for the online reduced-order modeling: fully online, semi-online and adaptive online. The adaptive online method automatically selects the fully online or semi-online and can achieve a good trade-off between modeling accuracy and efficiency.
翻译:在此篇文章中, 我们使用 Koopman 操作员在多级媒体中为非自主动态系统提供由数据驱动的减序模型。 与自主动态系统不同, 非自主动态系统的Koopman 操作员家族在很大程度上取决于时间配对。 为了有效估算时间依赖的 Koopman 操作员, 使用移动时间窗口来分解快照数据, 并使用扩展的动态模式分解方法来计算每个本地时间域的 Koopman 操作员。 多级媒体中的许多半线性能在非常不同的规模上各不相同。 为了捕捉多级信息, 所收集的数据的尺寸可能很高。 为了在多级媒体中准确构建动态系统模型的模型, 我们使用高空间的观测数据。 很难用非常高的维度数据对Koopman 操作员进行编译。 因此, 提议了减序建模战略来应对困难。 拟议的减序模型建模包括两个阶段: 离线阶段和在线阶段。 在离线阶段中, 分级的低级分级分级数据可能具有高档性, 用于减少在线的在线的在线的线上性选择性选择。 正在使用不全线操作系统 将实时的初始操作系统更新。 将降低的在线数据变成为初始化的在线数据。 将降低的在线系统将降低的在线系统, 将缩小到在线的在线系统 将降低的在线数据。 将降低到 将降低到 将降低到 正确的系统 将降低到 。 。 正确的系统 简化度数据转换为简化度数据 将降低到 正确的系统 。 降低到 正确的系统 。