Partial Differential Equations (PDEs) with high dimensionality are commonly encountered in computational physics and engineering. However, finding solutions for these PDEs can be computationally expensive, making model-order reduction crucial. We propose such a data-driven scheme that automates the identification of the time-scales involved and can produce stable predictions forward in time as well as under different initial conditions not included in the training data. To this end, we combine a non-linear autoencoder architecture with a time-continuous model for the latent dynamics in the complex space. It readily allows for the inclusion of sparse and irregularly sampled training data. The learned, latent dynamics are interpretable and reveal the different temporal scales involved. We show that this data-driven scheme can automatically learn the independent processes that decompose a system of linear ODEs along the eigenvectors of the system's matrix. Apart from this, we demonstrate the applicability of the proposed framework in a hidden Markov Model and the (discretized) Kuramoto-Shivashinsky (KS) equation. Additionally, we propose a probabilistic version, which captures predictive uncertainties and further improves upon the results of the deterministic framework.
翻译:在计算物理学和工程中,通常会遇到具有高度维度的局部差异。然而,为这些PDE寻找解决方案,其计算成本可能很高,使模型序列的减少变得至关重要。我们建议采用这种数据驱动办法,使所涉时间尺度的识别自动化,并能够在培训数据中不包括的不同初始条件下及时向前作出稳定的预测。为此,我们将非线性自动编码结构与复杂空间潜在动态的时间持续模型结合起来。它很容易将稀有和不定期抽样的培训数据纳入其中。所学的、潜在的动态是可以解释的,并揭示了所涉及的不同时间尺度。我们表明,这种数据驱动办法可以自动地学习独立过程,在系统矩阵的构型器之外,分解一个线性ODE系统。除此之外,我们还展示了拟议框架在隐藏的Markov模型和(分解的)Kuramototo-Shivashinsky(KS)等式中的适用性。此外,我们提议对不确定性进行预测,以进一步测定性框架。</s>