Reduced-order models are indispensable for multi-query or real-time problems. However, there are still many challenges to constructing efficient ROMs for time-dependent parametrized problems. Using a linear reduced space is inefficient for time-dependent nonlinear problems, especially for transport-dominated problems. The non-linearity usually needs to be addressed by hyper-reduction techniques, such as DEIM, but it is intrusive and relies on the assumption of affine dependence of parameters. This paper proposes and studies a non-intrusive reduced-order modeling approach for time-dependent parametrized problems. It is purely data-driven and naturally split into offline and online stages. During the offline stage, a convolutional autoencoder, consisting of an encoder and a decoder, is trained to perform dimensionality reduction. The encoder compresses the full-order solution snapshots to a nonlinear manifold or a low-dimensional reduced/latent space. The decoder allows the recovery of the full-order solution from the latent space. To deal with the time-dependent problems, a high-order dynamic mode decomposition (HODMD) is utilized to model the trajectories in the latent space for each parameter. During the online stage, the HODMD models are first utilized to obtain the latent variables at a new time, then interpolation techniques are adopted to recover the latent variables at a new parameter value, and the full-order solution is recovered by the decoder. Some numerical tests are conducted to show that the approach can be used to predict the unseen full-order solution at new times and parameter values fast and accurately, including transport-dominated problems.


翻译:降序模型对于多孔或实时问题是不可或缺的。然而,在为基于时间的对称问题建造高效的 ROM 方面,仍然有许多挑战。 使用线性缩小的空间对于基于时间的非线性问题, 特别是对于以运输为主的问题来说是无效的。 非线性通常需要通过超减缩技术来解决, 例如 DEIM, 但是它具有侵扰性, 依赖于参数的偏向依赖性假设。 本文建议并研究一种非侵入性降低的参数模型化方法, 以时间为依存的对称问题。 它纯粹是由数据驱动的, 自然地分为离线和在线阶段。 在离线阶段, 由编码器和解密器构成的共振动自动解码器, 以进行增缩。 编码器将全线性解决方案压缩成非线性多重或低维度的减少/拉长空间。 解调使全序方法能够从暗中空间恢复全序式的解决方案。 处理一些基于时间的数值驱动问题, 在离线性模型和离线性离线性离线性轨道的离线性快速解变变变变变变法中, 运行中, 正在使用的每个对机的动态变现的动态变式的动态变式式式式转换式转换式式式转换式式式式式式式式式式式的每个在使用时间段式变压式式式式式式式式式式式的每个时间段到回到回式周期的周期的周期都在使用。</s>

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月26日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员