This paper is dedicated to achieving scalable relative state estimation using inter-robot Euclidean distance measurements. We consider equipping robots with distance sensors and focus on the optimization problem underlying relative state estimation in this setup. We reveal the commonality between this problem and the coordinates realization problem of a sensor network. Based on this insight, we propose an effective unconstrained optimization model to infer the relative states among robots. To work on this model in a distributed manner, we propose an efficient and scalable optimization algorithm with the classical block coordinate descent method as its backbone. This algorithm exactly solves each block update subproblem with a closed-form solution while ensuring convergence. Our results pave the way for distance measurements-based relative state estimation in large-scale multi-robot systems.
翻译:本文致力于利用机器人间欧几里德距离测量法实现可缩放相对状态估算。 我们考虑为机器人配备远程传感器, 并关注此设置中相对状态估算所依据的优化问题。 我们揭示了这个问题与传感器网络的坐标实现问题之间的共性。 基于这一洞察, 我们提出了一个有效的、 不受限制的优化模型, 用以推断机器人之间的相对状态。 为了以分布方式研究这一模型, 我们建议了一种高效且可缩放的优化算法, 传统区块协调下行方法作为主干线。 这种算法精确地解决了每个区块以封闭式解决方案更新子问题,同时确保聚合。 我们的结果为大型多机器人系统中的远程测量相对状态估算铺平了道路。</s>