Knowledge gradient is a design principle for developing Bayesian sequential sampling policies to solve optimization problems. In this paper we consider the ranking and selection problem in the presence of covariates, where the best alternative is not universal but depends on the covariates. In this context, we prove that under minimal assumptions, the sampling policy based on knowledge gradient is consistent, in the sense that following the policy the best alternative as a function of the covariates will be identified almost surely as the number of samples grows. We also propose a stochastic gradient ascent algorithm for computing the sampling policy and demonstrate its performance via numerical experiments.


翻译:知识梯度是制定贝叶斯相继抽样政策以解决优化问题的设计原则。在本文件中,我们考虑的是同级差的排名和选择问题,其中最佳的替代方法不是普遍性的,而是取决于同级差。在这方面,我们证明,在最低假设下,以知识梯度为基础的抽样政策是一致的,也就是说,按照该政策,随着样品数量的增加,作为同级差函数的最佳替代方法将几乎肯定地被确定为最佳的。我们还提出一种随机梯度算法,用于计算抽样政策并通过数字实验来显示其表现。

1
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年4月30日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
Top
微信扫码咨询专知VIP会员