We study optimal strategies in two-player stochastic games that are played on a finite graph, equipped with a general payoff function. The existence of optimal strategies that do not make use of neither memory nor randomisation is a desirable property that vastly simplifies the algorithmic analysis of such games. Our main theorem gives a sufficient condition for the maximizer to possess such a simple optimal strategy. The condition is imposed on the payoff function, saying the payoff does not depend on any finite prefix (shift-invariant) and combining two trajectories does not give higher payoff than the payoff of the parts (submixing). The core technical property that enables the proof of the main theorem is that of the existence of epsilon-subgame-perfect strategies when the payoff function is shift-invariant. Furthermore, the same techniques can be used to prove a finite-memory transfer-type theorem: namely that for shift-invariant and submixing payoff functions, the existence of optimal finite-memory strategies in one-player games for the minimizer implies the existence of the same in two-player games. We show that numerous classical payoff functions are submixing and shift-invariant.


翻译:我们研究双玩者随机游戏的最佳策略,这些游戏在限定的图形上播放,配有一般报酬功能。存在不使用内存和随机化的最佳策略是一种可取的属性,可以大大简化这种游戏的算法分析。我们的主要理论为最大玩者拥有这种简单最佳策略提供了充分的条件。这个条件被强加在支付功能上,指出支付并不取决于任何有限的前缀(临时变换)和两种轨迹的组合不会带来高于部分(子混合)报酬的回报。使主要理论得到证明的核心技术属性是,当支付功能是变换-变换时,就存在埃普西朗-次游戏的超成功策略。此外,同样的技术可以用来证明一个有限的移动式转移类型理论:即变换变换和子组合支付功能,一个游戏中存在最优的定调策略,而一个游戏的最小变换功能是最小化的。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月17日
Arxiv
0+阅读 · 2021年6月17日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员