We work with continuous-time, continuous-space stochastic dynamical systems described by stochastic differential equations (SDE). We present a new approach to compute probabilistic safety regions, namely sets of initial conditions of the SDE associated to trajectories that are safe with a probability larger than a given threshold. We introduce a functional that is minimised at the border of the probabilistic safety region, then solve an optimisation problem using techniques from Malliavin Calculus that computes such region. Unlike existing results in the literature, this new approach allows one to compute probabilistic safety regions without gridding the state space of the SDE.
翻译:我们使用由随机差异方程式描述的连续时间、连续空间随机动态系统开展工作。我们提出了一个计算概率安全区域的新办法,即与概率大于给定阈值的安全轨迹相关的SDE初始条件组。我们引入了在概率安全区域边界最小化的功能,然后使用计算此类区域的Malliavin Calculus的技术解决优化问题。与文献中的现有结果不同,这一新办法允许在不将SDE的状态空间网格化的情况下对概率安全区域进行计算。