We develop a unified approach to bounding the largest and smallest singular values of an inhomogeneous random rectangular matrix, based on the non-backtracking operator and the Ihara-Bass formula for general Hermitian matrices with a bipartite block structure. Our main results are probabilistic upper (respectively, lower) bounds for the largest (respectively, smallest) singular values of a large rectangular random matrix $X$. These bounds are given in terms of the maximal and minimal $\ell_2$-norms of the rows and columns of the variance profile of $X$. The proofs involve finding probabilistic upper bounds on the spectral radius of an associated non-backtracking matrix $B$. The two-sided bounds can be applied to the centered adjacency matrix of sparse inhomogeneous Erd\H{o}s-R\'{e}nyi bipartite graphs for a wide range of sparsity. In particular, for Erd\H{o}s-R\'{e}nyi bipartite graphs $\mathcal G(n,m,p)$ with $p=\omega(\log n)/n$, and $m/n\to y \in (0,1)$, our sharp bounds imply that there are no outliers outside the support of the Mar\v{c}enko-Pastur law almost surely. This result is novel, and it extends the Bai-Yin theorem to sparse rectangular random matrices.
翻译:我们根据非回溯跟踪操作员和Ihara-Bass公式,为具有双面块结构的通用 Hermitian 矩阵制定统一的方法,将最大(分别为最小的)大矩形随机矩阵的最大和最小的单方值捆绑起来。这些边框以无异方形随机矩阵的最大和最小 $@ell_2$-norm 和 $X 差异剖面的列为单位。 证据涉及在相关非回溯矩阵的光谱半径上找到几乎具有概率性的上方框 $B$。 双面边框可以应用到无异方角随机大矩阵的最大( 分别为最小的、 最小的) 单方矩阵。 这些边框以最大和最小的 $@ell_ 2$- 平面图为单位。 对于 Erd\ h=xx$, R\\\\\ 直径直方正方根/ 直径, 直径直径( 美元) 直径直径/ 直径直径, 直径直径直径直径框框框框框框框框框框框框框框框框框框框框。