For a given $p\times n$ data matrix $\textbf{X}_n$ with i.i.d. centered entries and a population covariance matrix $\bf{\Sigma}$, the corresponding sample precision matrix $\hat{\bf\Sigma}^{-1}$ is defined as the inverse of the sample covariance matrix $\hat{\bf{\Sigma}} = (1/n) \bf{\Sigma}^{1/2} \textbf{X}_n\textbf{X}_n^\top \bf{\Sigma}^{1/2}$. We determine the joint distribution of a vector of diagonal entries of the matrix $\hat{\bf\Sigma}^{-1}$ in the situation, where $p_n=p< n$ and $p/n \to y \in [0,1)$ for $n\to\infty$. Remarkably, our results cover both the case where the dimension is negligible in comparison to the sample size and the case where it is of the same magnitude. Our approach is based on a QR-decomposition of the data matrix, yielding a connection to random quadratic forms and allowing the application of a central limit theorem for martingale difference schemes. Moreover, we discuss an interesting connection to linear spectral statistics of the sample covariance matrix. More precisely, the logarithmic diagonal entry of the sample precision matrix can be interpreted as a difference of two highly dependent linear spectral statistics of $\hat{\bf\Sigma}$ and a submatrix of $\hat{\bf\Sigma}$. This difference of spectral statistics fluctuates on a much smaller scale than each single statistic.
翻译:对于一个给定的 $p\ time 数据矩阵 $\ textbf{X\\ n美元, 与 i.d. 中心条目和人口变量矩阵 $\ bf\\ sigma} 美元, 对应的样本精确矩阵 $\ hhat\ b\ b\ sgma\\\\ 1} 美元, 被定义为 样本变量矩阵 $\ hat_ bf\ sigma} = (1/n) = (1/n)\ b\ sigma\\ xxxxxxxxx\ textb\ top\ libral_ ligma_ 1/2} 美元 的反差 。 我们确定在目前情况下, 矩阵 $\ b\ b\ b\ b\ sigma_ 1} 的对等量条目的矢量矢量 的矢量的矢量分布, $ p= n美元 美元 美元 和 美元\\\\\ 美元 美元\ a commax lax lax li 。 我们的方法基于 将 数据与 的最小化连接 。