Matrix-product codes over finite fields are an important class of long linear codes by combining several commensurate shorter linear codes with a defining matrix over finite fields. The construction of matrix-product codes with certain self-orthogonality over finite fields is an effective way to obtain good $q$-ary quantum codes of large length. This article has two purposes: the first is to summarize some results of this topic obtained by the author of this article and his cooperators in [10-12]; the second is to add some new results on quasi-orthogonal matrices (resp. quasi-unitary matrices), Euclidean dual-containing (resp. Hermitian dual-containing) matrix-product codes and $q$-ary quantum codes derived from these matrix-product codes.
翻译:有限字段的矩阵产品编码是长线性编码的一个重要类别,将若干相应的短线性编码与限定字段的界定矩阵合并起来。构建矩阵产品编码,对有限字段具有一定的自辨性,是获得高长度的优质美元-美元量子编码的有效方法。本条有两个目的:第一是总结本文章作者及其[10-12年]合作者获得的这一专题的一些结果;第二是增加一些关于准正向矩阵(准统一矩阵)、欧克利德双层(重复的,Hermitian双含)矩阵产品编码和从这些矩阵产品编码获得的美元-量子编码的新结果。