Gaussian process hyperparameter optimization requires linear solves with, and log-determinants of, large kernel matrices. Iterative numerical techniques are becoming popular to scale to larger datasets, relying on the conjugate gradient method (CG) for the linear solves and stochastic trace estimation for the log-determinant. This work introduces new algorithmic and theoretical insights for preconditioning these computations. While preconditioning is well understood in the context of CG, we demonstrate that it can also accelerate convergence and reduce variance of the estimates for the log-determinant and its derivative. We prove general probabilistic error bounds for the preconditioned computation of the log-determinant, log-marginal likelihood and its derivatives. Additionally, we derive specific rates for a range of kernel-preconditioner combinations, showing that up to exponential convergence can be achieved. Our theoretical results enable provably efficient optimization of kernel hyperparameters, which we validate empirically on large-scale benchmark problems. There our approach accelerates training by up to an order of magnitude.


翻译:Gausian 进程超光度优化要求与大型内核矩阵进行线性解析和对数值的确定。循环数字技术正在变得日益流行,以更大的数据集为尺度,依靠线性解析和对日志-确定性估算的共振梯度法(CG)和随机痕量估计。这项工作为这些计算的先决条件引入了新的算法和理论洞察力。在CG的背景下,我们非常理解先决条件,但我们也证明它能够加速对日志-确定性及其衍生物的估计数的趋同并减少其差异。我们证明对日志-确定性、日志-边缘可能性及其衍生物的预设计算存在一般概率误差。此外,我们为一系列内核-预设性组合得出了具体的比率,表明可以达到指数趋同。我们的理论结果可以使内核超常分数的精度优化,我们从经验角度验证了大规模基准问题。我们的方法将培训速度加速到一定的高度。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员