This paper presents a method of learning qualitatively interpretable models in object detection using popular two-stage region-based ConvNet detection systems (i.e., R-CNN). R-CNN consists of a region proposal network and a RoI (Region-of-Interest) prediction network.By interpretable models, we focus on weakly-supervised extractive rationale generation, that is learning to unfold latent discriminative part configurations of object instances automatically and simultaneously in detection without using any supervision for part configurations. We utilize a top-down hierarchical and compositional grammar model embedded in a directed acyclic AND-OR Graph (AOG) to explore and unfold the space of latent part configurations of RoIs. We propose an AOGParsing operator to substitute the RoIPooling operator widely used in R-CNN, so the proposed method is applicable to many state-of-the-art ConvNet based detection systems. The AOGParsing operator aims to harness both the explainable rigor of top-down hierarchical and compositional grammar models and the discriminative power of bottom-up deep neural networks through end-to-end training. In detection, a bounding box is interpreted by the best parse tree derived from the AOG on-the-fly, which is treated as the extractive rationale generated for interpreting detection. In learning, we propose a folding-unfolding method to train the AOG and ConvNet end-to-end. In experiments, we build on top of the R-FCN and test the proposed method on the PASCAL VOC 2007 and 2012 datasets with performance comparable to state-of-the-art methods.
翻译:本文介绍了一种方法,用以学习利用基于流行的两阶段区域级ConvNet探测系统(即R-CNN)进行物体探测的定性解释模型。 R-CNN由区域建议网络和ROI(利益区区)预测网络组成。我们通过可解释模型,侧重于薄弱监督的采掘理由生成,正在学习在不使用对部件配置的任何监督的情况下自动和同时显示物体检测系统的潜在歧视部分配置。我们利用嵌入定向循环和OR图(AOG)的自上而下的ConvNet级和成份语法模型探索和展示RoIs潜在部分配置的空间。我们建议由AOGParrassing操作器取代RIPooling操作器,因此拟议的方法适用于许多基于ConNet的状态状态检测系统。AOGParrence操作器旨在利用自上而下级和成成成成型的VRwmargram模型的可解释的自上下至下方结构模型以及自下至深层探测器的可分析能力。AOPral-rod-rod-rod-rode-rode-rodeal-rode-role-rodustrisle-rodustrisal-rodustrisal-roisl-rodu为2012、O-rout-roisal-rod-roisal-rod-rodu成成成成成成成的升级成的升级的测试方法,通过A-从O-O-rod-rod-透法的升级成成成成成的升级成的升级成的升级成的系统,从O-从O-从O-rocal-rod-rocal-rod-rod-rod-rod-rod-rod-rocal-rocal-rocal-rod-rocal-tra-ro-ro-ro-rocal-rocal-rocal-rocal-rocal-rocal-rocal-rod-to-to-ro-ro-ro-ro-ro-ro-ro-ro-ro-ro-ro-ro-ro-ro-ro-ro-ro-ro-ro-ro-ro-ro-ro-ro-ro-ro-ro