Autoregressive models have been widely used in unsupervised text style transfer. Despite their success, these models still suffer from the content preservation problem that they usually ignore part of the source sentence and generate some irrelevant words with strong styles. In this paper, we propose a Non-Autoregressive generator for unsupervised text Style Transfer (NAST), which alleviates the problem from two aspects. First, we observe that most words in the transferred sentence can be aligned with related words in the source sentence, so we explicitly model word alignments to suppress irrelevant words. Second, existing models trained with the cycle loss align sentences in two stylistic text spaces, which lacks fine-grained control at the word level. The proposed non-autoregressive generator focuses on the connections between aligned words, which learns the word-level transfer between styles. For experiments, we integrate the proposed generator into two base models and evaluate them on two style transfer tasks. The results show that NAST can significantly improve the overall performance and provide explainable word alignments. Moreover, the non-autoregressive generator achieves over 10x speedups at inference. Our codes are available at https://github.com/thu-coai/NAST.
翻译:自动递减模式已被广泛用于不受监督的文本样式传输中。 尽管这些模式取得了成功, 但这些模式仍然存在内容保存问题, 它们通常忽略源句的一部分, 并产生一些风格强烈的不相干字词。 在本文中, 我们提议为不受监督的文本样式传输( NAST) 建立一个非自动递减生成器, 从而从两个方面缓解问题。 首先, 我们观察到, 转移的句子中的大多数字词可以与源句中的相关字词保持一致, 因此我们明确地为不相关的字词进行模拟词对齐。 其次, 在两个文本空间中, 对循环损失匹配句进行过培训的现有模型, 它们在文字级别上缺乏精细的精密控制。 拟议的非自动递减生成器侧重于对齐字词之间的联系, 以学习样式之间的字级转换 。 关于实验, 我们将拟议的生成器整合成两个基本模型, 并评估两个风格传输任务。 结果显示, NAST 可以显著改进总体性, 并提供可解释的词校正。 此外, 非倾缩式生成器的生成器可以在 10x/ STfer 。