In order to meet the requirements for safety and latency in many IoT applications, intelligent decisions must be made right here right now at the network edge, calling for edge intelligence. To facilitate fast edge learning, this work advocates a platform-aided federated meta-learning architecture, where a set of edge nodes joint force to learn a meta-model (i.e., model initialization for adaptation in a new learning task) by exploiting the similarity among edge nodes as well as the cloud knowledge transfer. The federated meta-learning problem is cast as a regularized optimization problem, using Bregman Divergence between the edge model and the pre-trained model as the regularization. We then devise an inexact alternating direction method of multiplier (ADMM) based Hessian-free federated meta-learning algorithm, called ADMM-FedMeta, with inexact Hessian estimation. Further, we analyze the convergence properties and the rapid adaptation performance of ADMM-FedMeta for the general non-convex case. The theoretical results show that under mild conditions, ADMM-FedMeta converges to an $\epsilon$-approximate first-order stationary point after at most $\mathcal{O}(1/\epsilon^2)$ communication rounds. Extensive experimental studies on benchmark datasets demonstrate the effectiveness and efficiency of ADMM-FedMeta, and showcase that ADMM-FedMeta outperforms the existing baselines.


翻译:为了达到许多IOT应用的安全性和延缓性要求,必须现在就在网络边缘做出智能决定,要求获得精密情报。为了便利快速边缘学习,这项工作主张一个平台辅助的联邦化元学习架构,在这个架构中,一组边缘节点联合力量通过利用边缘节点之间的相似性以及云层知识转移来学习元模型(即适应新学习任务的模式初始化)。 联合的元学习问题被作为常规化优化问题,使用边际模型和预先培训的模型之间的分辨作为正规化。我们随后设计了一个基于Hesian-无Hesian-Federal-Fed-Metal 模型的不精确交替方向方法,称为ADMM-FedM-Feta, 以及不Exact Hesian 估计。此外,我们分析了ADMMM-F-FedMetta的趋同性特征和快速适应性表现,用于一般非convex案例。理论结果显示,在温度条件下,ADMMM-FM-MDMAS-MASMAS-MAS-MAS-MAS-ADASMAMAS ASMAD AS AS AS AS AS ASAL ASU ASU ASU ASUAL ASUAL ASU ASU ASU ASU ASU ASU ASU AS AS AS AS AS ASU AS AS AS AS AS AS AS AS AS ASU AS ASY ASY ASY ASU ASY ASY ASY ASY ASY AS AS AS ASU AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS ASU ASU AS AS ASU AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年2月18日
Optimization for deep learning: theory and algorithms
Arxiv
102+阅读 · 2019年12月19日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Arxiv
0+阅读 · 2021年2月18日
Optimization for deep learning: theory and algorithms
Arxiv
102+阅读 · 2019年12月19日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
6+阅读 · 2018年4月24日
Top
微信扫码咨询专知VIP会员