This paper studies the rank constrained optimization problem (RCOP) that aims to minimize a linear objective function over intersecting a prespecified closed rank constrained domain set with m two-sided linear constraints. Replacing the domain set by its closed convex hull offers us a convex Dantzig-Wolfe Relaxation (DWR) of the RCOP. Our goal is to characterize necessary and sufficient conditions under which the DWR and RCOP are equivalent in the sense of extreme point, convex hull, and objective value. More precisely, we develop the first-known necessary and sufficient conditions about when the DWR feasible set matches that of RCOP for any m linear constraints from two perspectives: (i) extreme point exactness -- all extreme points in the DWR feasible set belong to that of the RCOP; and (ii) convex hull exactness -- the DWR feasible set is identical to the closed convex hull of RCOP feasible set. From the optimization view, we also investigate (iii) objective exactness -- the optimal values of the DWR and RCOP coincide for any $m$ linear constraints and a family of linear objective functions. We derive the first-known necessary and sufficient conditions of objective exactness when the DWR admits four favorable classes of linear objective functions, respectively. From the primal perspective, this paper presents how our proposed conditions refine and extend the existing exactness results in the quadratically constrained quadratic program (QCQP) and fair unsupervised learning.
翻译:本文研究等级限制优化问题(RCOP),目的是在预先指定的封闭等级限制域与m 双面线性限制限制下,将线性目标功能最小化,将线性目标功能与预先指定的封闭等级限制域相交; 替换封闭的螺旋壳设定的域为我们提供了RCOP的康韦克斯 Dantzig-Wolfe 放松(DWR) 。 我们的目标是确定DWR和RCOP在极端点、卷状船体和客观价值等同的必要和充分条件。 更确切地说,我们从两个角度,我们开发了已知的DRW和RCOP在任何米线性限制上与RCOP相匹配的首个必要和充分条件:(一) 极端精确度 -- -- DWR的所有其他极端点都属于RCOP的;和(二) 锥形体限制 -- -- DRW和RCOP的封闭式船体质质质质与极端点等同。 我们还从最优化的角度研究(三) DRW和RP的最佳价值与任何1美元不直线性约束和直线性目标性限制的类别,我们所认识的现有平面性程序如何扩大的正确理解现有的平级。