Software quality estimation is a challenging and time-consuming activity, and models are crucial to face the complexity of such activity on modern software applications. One main challenge is that the improvement of distinctive quality attributes may require contrasting refactoring actions on an application, as for trade-off between performance and reliability. In such cases, multi-objective optimization can provide the designer with a wider view on these trade-offs and, consequently, can lead to identify suitable actions that take into account independent or even competing objectives. In this paper, we present an approach that exploits the NSGA-II multi-objective evolutionary algorithm to search optimal Pareto solution frontiers for software refactoring while considering as objectives: i) performance variation, ii) reliability, iii) amount of performance antipatterns, and iv) architectural distance. The algorithm combines randomly generated refactoring actions into solutions (i.e., sequences of actions) and compares them according to the objectives. We have applied our approach on a train ticket booking service case study, and we have focused the analysis on the impact of performance antipatterns on the quality of solutions. Indeed, we observe that the approach finds better solutions when antipatterns enter the multi-objective optimization. In particular, performance antipatterns objective leads to solutions improving the performance by up to 15% with respect to the case where antipatterns are not considered, without affecting the solution quality on other objectives.


翻译:软件质量估算是一项具有挑战性和耗时性的活动,模型对于面对现代软件应用中此类活动的复杂性至关重要。一个主要挑战是,改进独特质量特性可能需要在应用上采取对比性再定性行动,如在性能和可靠性之间取舍。在这种情况下,多目标优化可以使设计者对这些权衡取舍有更广泛的观点,从而导致确定考虑到独立或甚至相互竞争的目标的适当行动。在本文件中,我们提出了一个方法,利用NSGA-II多目标的多目标进化算法,寻找最佳的Pareto解决方案领域,以重新设置软件。一个主要的挑战是,在考虑目标时,改进软件的功能差异、可靠性、三)性能反模式的数量和建筑距离。这种算法可以将随机产生的再定性行动结合到解决方案(即行动顺序),并据此根据目标进行比较。我们应用了我们的方法在火车票预订服务案例研究中,我们把反性能反调调分析集中在对解决方案质量的影响上,同时考虑目标是:(i)性能变化、可靠性、可靠性、性能反调量和建筑距离。事实上,我们通过采用更好的业绩方法来改进其他解决方案。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员