For a linear matrix function $f$ in $X \in \R^{m\times n}$ we consider inhomogeneous linear matrix equations $f(X) = E$ for $E \neq 0$ that have or do not have solutions. For such systems we compute optimal norm constrained solutions iteratively using the Conjugate Gradient and Lanczos' methods in combination with the More-Sorensen optimizer. We build codes for ten linear matrix equations, of Sylvester, Lyapunov, Stein and structured types and their T-versions, that differ only in two five times repeated equation specific code lines. Numerical experiments with linear matrix equations are performed that illustrate universality and efficiency of our method for dense and small data matrices, as well as for sparse and certain structured input matrices. Specifically we show how to adapt our universal method for sparse inputs and for structured data such as encountered when fusing image data sets via a Sylvester equation algorithm to obtain an image of higher resolution.


翻译:线性矩阵函数 $X\ in\ R\\\ m\ times n} $f美元,我们认为,对于具有或没有解决方案的线性矩阵公式,我们考虑的是非同质线性矩阵方程式$f(X) = E$E\neq 0美元。对于这些系统,我们使用“共振梯度”和“兰佐斯”的方法,结合“更多苏伦森”优化器,反复计算最佳规范限制解决方案。我们为十种线性矩阵方程式、Sylvester、Lyapunov、Stein和结构型及其Tversion等方程式制定了代码,这些代码在重复的方程式特定代码行中只有五倍不同。用线性矩阵方程式方程式方程式方程式进行了数值实验,显示了我们用于密度和小数据矩阵以及稀有和某些结构化输入矩阵的方法的普遍性和效率。具体地说,我们如何调整我们通用的方法,用于稀薄的投入和结构化数据,例如通过Sylvester等式算法将图像数据集使用时遇到的数据。

0
下载
关闭预览

相关内容

专知会员服务
22+阅读 · 2021年4月10日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
已删除
将门创投
5+阅读 · 2017年11月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
已删除
将门创投
5+阅读 · 2017年11月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员