For a linear matrix function $f$ in $X \in \R^{m\times n}$ we consider inhomogeneous linear matrix equations $f(X) = E$ for $E \neq 0$ that have or do not have solutions. For such systems we compute optimal norm constrained solutions iteratively using the Conjugate Gradient and Lanczos' methods in combination with the More-Sorensen optimizer. We build codes for ten linear matrix equations, of Sylvester, Lyapunov, Stein and structured types and their T-versions, that differ only in two five times repeated equation specific code lines. Numerical experiments with linear matrix equations are performed that illustrate universality and efficiency of our method for dense and small data matrices, as well as for sparse and certain structured input matrices. Specifically we show how to adapt our universal method for sparse inputs and for structured data such as encountered when fusing image data sets via a Sylvester equation algorithm to obtain an image of higher resolution.
翻译:线性矩阵函数 $X\ in\ R\\\ m\ times n} $f美元,我们认为,对于具有或没有解决方案的线性矩阵公式,我们考虑的是非同质线性矩阵方程式$f(X) = E$E\neq 0美元。对于这些系统,我们使用“共振梯度”和“兰佐斯”的方法,结合“更多苏伦森”优化器,反复计算最佳规范限制解决方案。我们为十种线性矩阵方程式、Sylvester、Lyapunov、Stein和结构型及其Tversion等方程式制定了代码,这些代码在重复的方程式特定代码行中只有五倍不同。用线性矩阵方程式方程式方程式方程式进行了数值实验,显示了我们用于密度和小数据矩阵以及稀有和某些结构化输入矩阵的方法的普遍性和效率。具体地说,我们如何调整我们通用的方法,用于稀薄的投入和结构化数据,例如通过Sylvester等式算法将图像数据集使用时遇到的数据。