This paper presents a fast algorithm to solve a spectral estimation problem for two-dimensional random fields. The latter is formulated as a convex optimization problem with the Itakura-Saito pseudodistance as the objective function subject to the constraints of moment equations. We exploit the structure of the Hessian of the dual objective function in order to make possible a fast Newton solver. Then we incorporate the Newton solver to a predictor-corrector numerical continuation method which is able to produce a parametrized family of solutions to the moment equations. We have performed two sets of numerical simulations to test our algorithm and spectral estimator. The simulations on the frequency estimation problem shows that our spectral estimator outperforms the classical windowed periodograms in the case of two hidden frequencies and has a higher resolution. The other set of simulations on system identification indicates that the numerical continuation method is more robust than Newton's method alone in ill-conditioned instances.


翻译:本文提出了一个快速算法, 以解决二维随机字段的光谱估计问题。 后者是作为Itakura- Saito 假义距离作为受时钟方程式制约的客观函数的一个二次优化问题设计的。 我们利用了双重目标函数的赫西安结构, 以便能够快速解决牛顿问题。 然后我们将牛顿求解器纳入一个预测器- 校正或数字持续方法, 它可以生成对时钟方程式的匹配式一系列解决方案。 我们进行了两套数字模拟, 测试我们的算法和光谱估计器。 频率估计问题的模拟显示, 在两个隐藏频率的情况下, 我们的光谱测算器比传统的窗口时间图优, 并且具有更高的分辨率。 系统识别上的另一套模拟显示, 数字持续方法比仅牛顿在条件差的情况下的方法更强大。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
已删除
将门创投
7+阅读 · 2019年10月15日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Arxiv
0+阅读 · 2021年11月21日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
相关资讯
已删除
将门创投
7+阅读 · 2019年10月15日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员