We revisit the finite-sample behavior of single-variable just-identified instrumental variables (just-ID IV) estimators, arguing that in most microeconometric applications, the usual inference strategies are likely reliable. Three widely-cited applications are used to explain why this is so. We then consider pretesting strategies of the form $t_{1}>c$, where $t_{1}$ is the first-stage $t$-statistic, and the first-stage sign is given. Although pervasive in empirical practice, pretesting on the first-stage $F$-statistic exacerbates bias and distorts inference. We show, however, that median bias is both minimized and roughly halved by setting $c=0$, that is by screening on the sign of the \textit{estimated} first stage. This bias reduction is a free lunch: conventional confidence interval coverage is unchanged by screening on the estimated first-stage sign. To the extent that IV analysts sign-screen already, these results strengthen the case for a sanguine view of the finite-sample behavior of just-ID IV.
翻译:我们重新审视了单一可变的简单工具变量(Just-ID IV)估算员的有限抽样行为,认为在大多数微计量应用中,通常的推论战略可能是可靠的。 有三个广泛引用的应用用于解释为何如此。 然后我们考虑先测试表格$t ⁇ 1 ⁇ c$(美元为第一个阶段的美元统计,美元为第一个阶段的美元统计,第一个阶段的标志已经发出。虽然经验实践很普遍,但第一阶段的F$统计学预测试加剧了偏差和扭曲推论。然而,我们显示中位偏差通过设定$c=0,也就是在第一阶段的标记上进行筛选,已经将中位偏差缩小了一半。这种偏差减少是一种免费午餐:通过筛选估计的第一阶段标志,传统的信任间隔覆盖面没有改变。至于IV分析师的签署-屏幕已经很普遍,这些结果加强了对 JCD-ID IV 4 的有限缩写行为进行轮廓检查的理由。