The hypothesis of homogeneous treatment effects is central to the instrumental variables literature. This assumption signifies that treatment effects are constant across all subjects. It allows to interpret instrumental variable estimates as average treatment effects over the whole population of the study. When this assumption does not hold, the bias of instrumental variable estimators can be larger than that of naive estimators ignoring endogeneity. This paper develops two tests for the assumption of homogeneous treatment effects when the treatment is endogenous and an instrumental variable is available. The tests leverage a covariable that is (jointly with the error terms) independent of a coordinate of the instrument. This covariate does not need to be exogenous. The first test assumes that the potential outcomes are linear in the regressors and is computationally simple. The second test is nonparametric and relies on Tikhonov regularization. The treatment can be either discrete or continuous. We show that the tests have asymptotically correct level and asymptotic power equal to one against a range of alternatives. Simulations demonstrate that the proposed tests attain excellent finite sample performances. The methodology is also applied to the evaluation of returns to schooling and the effect of price on demand in a fish market.


翻译:同质治疗效应的假设是工具变量文献的核心。 这个假设表明,所有科目的治疗效果都是不变的。 它允许将工具变量估计数解释为对研究全部人群的平均治疗效果。 如果这一假设不成立, 工具变量估计值的偏差可能大于天真估计器的偏差, 忽略了内分质。 本文为假设同质治疗效果的假设开发了两个测试, 当治疗是内生的, 并且有一个工具变量存在时, 假设治疗效果为同质治疗效果的假设。 测试利用一种( 与误差条件一起) 的可变量, 独立于仪器的坐标之外。 这个变量不需要是外源的。 第一个测试假设, 潜在的结果在递增器中是线性的, 并且计算简单。 第二个测试是非对准的, 并依赖于Tikhonov 的正规化。 治疗可以是离散的, 也可以是连续的。 我们显示, 测试具有与一系列替代方法相等的微调的强度。 模拟显示, 拟议的测试将达到极差的样品性性性性性性表现。 方法也适用于对鱼的回收价格和效果的评估。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
70+阅读 · 2022年7月11日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
70+阅读 · 2022年7月11日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员