A common approach to approximating Gaussian log-likelihoods at scale exploits the fact that precision matrices can be well-approximated by sparse matrices in some circumstances. This strategy is motivated by the \emph{screening effect}, which refers to the phenomenon in which the linear prediction of a process $Z$ at a point $\mathbf{x}_0$ depends primarily on measurements nearest to $\mathbf{x}_0$. But simple perturbations, such as i.i.d. measurement noise, can significantly reduce the degree to which this exploitable phenomenon occurs. While strategies to cope with this issue already exist and are certainly improvements over ignoring the problem, in this work we present a new one based on the EM algorithm that offers several advantages. While in this work we focus on the application to Vecchia's approximation (1988), a particularly popular and powerful framework in which we can demonstrate true second-order optimization of M steps, the method can also be applied using entirely matrix-vector products, making it applicable to a very wide class of precision matrix-based approximation methods.


翻译:大规模接近高斯日志相似性的常见方法利用了精确矩阵在某些情况下可以与稀少的基质相近这一事实。 该战略的动机是 \ emph{ 筛选效果}, 它指的是一个现象, 即对一个过程的线性预测在 $\ mathbf{x ⁇ %0$ 的点上主要取决于最接近于 $\ mathbf{x ⁇ 0$的测量。 但是, 简单的扰动, 如 i.d. 测量噪音, 能够大大降低这种可利用现象发生的程度。 虽然对付这一问题的战略已经存在,而且显然在忽视这一问题方面有了改进,但在这项工作中,我们提出了一个基于EM算法的新现象,具有若干优势。 在这项工作中,我们把重点放在对Vecchia的近距离(一个特别受欢迎和强大的框架)的应用上, 我们可以展示M 步骤的真正的第二阶次优化, 这种方法也可以使用完全的基质测量产品来应用, 使该方法适用于非常广泛的精确的基质接近方法。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员