Observational studies of causal effects require adjustment for confounding factors. In the tabular setting, where these factors are well-defined, separate random variables, the effect of confounding is well understood. However, in public policy, ecology, and in medicine, decisions are often made in non-tabular settings, informed by patterns or objects detected in images (e.g., maps, satellite or tomography imagery). Using such imagery for causal inference presents an opportunity because objects in the image may be related to the treatment and outcome of interest. In these cases, we rely on the images to adjust for confounding but observed data do not directly label the existence of the important objects. Motivated by real-world applications, we formalize this challenge, how it can be handled, and what conditions are sufficient to identify and estimate causal effects. We analyze finite-sample performance using simulation experiments, estimating effects using a propensity adjustment algorithm that employs a machine learning model to estimate the image confounding. Our experiments also examine sensitivity to misspecification of the image pattern mechanism. Finally, we use our methodology to estimate the effects of policy interventions on poverty in African communities from satellite imagery.
翻译:关于因果关系的观察研究要求对各种因素加以调整。在表格中,这些因素是定义明确、独立的随机变量,因此人们非常理解混乱的影响。然而,在公共政策、生态和医学方面,往往在非热带环境中根据图像中检测到的模式或物体(如地图、卫星或摄影图象)作出决策。利用这种图像进行因果关系推断是一个机会,因为图像中的物体可能与利息的处理和结果有关。在这些情况下,我们依靠图像进行调整,以适应混乱,但观察到的数据并不直接标出重要对象的存在。受现实世界应用的驱动,我们正式确定这一挑战,如何处理这一挑战,以及哪些条件足以确定和估计因果关系。我们利用模拟实验分析有限抽样性性表现,利用敏性调整算法来估计效果,这种算法使用机器学习模型来估计图像的粘合结果。我们的实验还考察了图像模式机制对具体化的敏感性。最后,我们利用我们的方法,根据卫星图像来估计政策干预非洲社区贫困现象对卫星图像的影响。