We investigate the numerical solution of multiscale transport equations using Physics Informed Neural Networks (PINNs) with ReLU activation functions. Therefore, we study the analogy between PINNs and Least-Squares Finite Elements (LSFE) which lies in the shared approach to reformulate the PDE solution as a minimization of a quadratic functional. We prove that in the diffusive regime, the correct limit is not reached, in agreement with known results for first-order LSFE. A diffusive scaling is introduced that can be applied to overcome this, again in full agreement with theoretical results for LSFE. We provide numerical results in the case of slab geometry that support our theoretical findings.
翻译:暂无翻译