We consider the problem of capturing distortions arising from changes in frame rate as part of Video Quality Assessment (VQA). Variable frame rate (VFR) videos have become much more common, and streamed videos commonly range from 30 frames per second (fps) up to 120 fps. VFR-VQA offers unique challenges in terms of distortion types as well as in making non-uniform comparisons of reference and distorted videos having different frame rates. The majority of current VQA models require compared videos to be of the same frame rate, but are unable to adequately account for frame rate artifacts. The recently proposed Generalized Entropic Difference (GREED) VQA model succeeds at this task, using natural video statistics models of entropic differences of temporal band-pass coefficients, delivering superior performance on predicting video quality changes arising from frame rate distortions. Here we propose a simple fusion framework, whereby temporal features from GREED are combined with existing VQA models, towards improving model sensitivity towards frame rate distortions. We find through extensive experiments that this feature fusion significantly boosts model performance on both HFR/VFR datasets as well as fixed frame rate (FFR) VQA databases. Our results suggest that employing efficient temporal representations can result much more robust and accurate VQA models when frame rate variations can occur.
翻译:我们认为,在视频质量评估(VQA)中,收集因框架率变化而出现的扭曲现象的问题。变量框架率(VFR)视频已变得更加常见,流视频通常从每秒30个框架到120个框架。 VFR-VQA在扭曲类型方面以及在对参考和扭曲视频进行非统一比较方面提出了独特的挑战,其框架率不同。目前VQA模式的多数比对视频需要相同的框架率,但无法充分说明框架率的工艺品。最近提议的通用差异(GREED)VQA模式在这项工作上取得了成功,使用了关于时频带系数差异的自然视频统计模型,在预测因框架率扭曲而产生的视频质量变化方面表现优异。我们在这里提出了一个简单的融合框架,即GREED的时段特征与现有的VQA模式相结合,以提高模型对框架率扭曲的敏感性。我们通过广泛的实验发现,这一特征大大提升了HFR/VFR数据差异(GEED)模型的性能显著提高,在使用我们固定框架时,可以将VA数据格式的变现为稳定的框架,从而产生更稳的汇率。