Warning: this paper contains content that may be offensive or upsetting. Numerous natural language processing models have tried injecting commonsense by using the ConceptNet knowledge base to improve performance on different tasks. ConceptNet, however, is mostly crowdsourced from humans and may reflect human biases such as "lawyers are dishonest." It is important that these biases are not conflated with the notion of commonsense. We study this missing yet important problem by first defining and quantifying biases in ConceptNet as two types of representational harms: overgeneralization of polarized perceptions and representation disparity. We find that ConceptNet contains severe biases and disparities across four demographic categories. In addition, we analyze two downstream models that use ConceptNet as a source for commonsense knowledge and find the existence of biases in those models as well. We further propose a filtered-based bias-mitigation approach and examine its effectiveness. We show that our mitigation approach can reduce the issues in both resource and models but leads to a performance drop, leaving room for future work to build fairer and stronger commonsense models.


翻译:警告:本文包含的内容可能冒犯或破坏。 许多自然语言处理模型都尝试通过使用概念网知识库来注入常识,提高不同任务的业绩。 但是,概念网大多来自人类,可能反映人类偏见,如“律师不诚实”。重要的是,这些偏见不能与常识概念混为一谈。我们首先将概念网中的偏见作为两种代表性伤害来界定和量化,以此来研究这个缺失但重要的问题:对两极化观点和代表性差异的过分概括化。我们发现概念网包含四个人口类别之间的严重偏见和差异。此外,我们分析了两个下游模式,利用概念网作为常识知识的来源,并发现这些模式中存在偏见。我们进一步提出基于过滤的偏见缓解方法,并检查其有效性。我们表明,我们的减缓方法可以减少资源和模式中的问题,但导致业绩下降,为今后建立更公平和更完善的共同模式留下空间。

0
下载
关闭预览

相关内容

ConceptNet是免费提供的语义网络,旨在帮助计算机理解人们使用的单词的含义。
专知会员服务
32+阅读 · 2021年10月9日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
图卷积神经网络蒸馏知识,Distillating Knowledge from GCN
专知会员服务
94+阅读 · 2020年3月25日
【AAAI2020知识图谱论文概述】Knowledge Graphs @ AAAI 2020
专知会员服务
133+阅读 · 2020年2月13日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【资源】问答阅读理解资源列表
专知
3+阅读 · 2020年7月25日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2017年11月3日
CSKG: The CommonSense Knowledge Graph
Arxiv
18+阅读 · 2020年12月21日
Arxiv
3+阅读 · 2019年11月28日
Knowledge Distillation from Internal Representations
Arxiv
4+阅读 · 2019年10月8日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Arxiv
20+阅读 · 2019年9月7日
VIP会员
相关资讯
【资源】问答阅读理解资源列表
专知
3+阅读 · 2020年7月25日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2017年11月3日
Top
微信扫码咨询专知VIP会员