【资源】问答阅读理解资源列表

2020 年 7 月 25 日 专知

【导读】本文整理了问答阅读理解的相关资源,包括论文、PPT、模型等。

Github 地址:

https://github.com/xanhho/Reading-Comprehension-Question-Answering-Papers


综述论文

  • Chengchang Zeng et al., A Survey on Machine Reading Comprehension: Tasks, Evaluation Metrics, and Benchmark Datasets, arXiv, 2020, paper.

  • Matthew Gardner et al., On Making Reading Comprehension More Comprehensive., aclweb, 2019, paper.

  • Razieh Baradaran, Razieh Ghiasi, and Hossein Amirkhani, A Survey on Machine Reading Comprehension Systems, arXiv, 6 Jan 2020, paper.

  • Shanshan Liu et al., Neural Machine Reading Comprehension: Methods and Trends, arXiv, 2019, paper.

  • Xin Zhang et al., Machine Reading Comprehension: a Literature Review, arXiv, 2019, paper.

  • Boyu Qiu et al., A Survey on Neural Machine Reading Comprehension, arXiv, 2019, paper.

  • Danqi Chen: Neural Reading Comprehension and Beyond. PhD thesis, Stanford University, 2018, paper.

PPT

  • Sebastian Riedel, Reading and Reasoning with Neural Program Interpreters, slides, MRQA 2018.

  • Phil Blunsom, Data driven reading comprehension: successes and limitations, slides, MRQA 2018.

  • Jianfeng Gao, Multi-step reasoning neural networks for question answering, slides, MRQA 2018.

  • Sameer Singh, Questioning Question Answering Answers, slides, MRQA 2018.

评估论文

  • Diana Galvan, Active Reading Comprehension: A dataset for learning the Question-Answer Relationship strategy, ACL 2019, paper.

  • Divyansh Kaushik and Zachary C. Lipton, How Much Reading Does Reading Comprehension Require? A Critical Investigation of Popular Benchmarks, EMNLP 2018, paper.

  • Saku Sugawara et al., What Makes Reading Comprehension Questions Easier?, EMNLP 2018, paper.

  • Pramod K. Mudrakarta et al., Did the Model Understand the Question?, ACL 2018, paper.

  • Robin Jia and Percy Liang, Adversarial Examples for Evaluating Reading Comprehension Systems, EMNLP 2017, paper.

  • Saku Sugawara et al., Evaluation Metrics for Machine Reading Comprehension: Prerequisite Skills and Readability, ACL 2017, paper.

  • Saku Sugawara et al., Prerequisite Skills for Reading Comprehension: Multi-perspective Analysis of MCTest Datasets and Systems, AAAI 2017, paper.

  • Danqi Chen et al., A Thorough Examination of the CNN/Daily Mail Reading Comprehension Task, ACL 2016, paper.

其他相关论文(数据增强、迁移学习等)

  • Minghao Hu, Yuxing Peng, Zhen Huang and Dongsheng Li, A Multi-Type Multi-Span Network for Reading Comprehension that Requires Discrete Reasoning, EMNLP 2019, paper.

  • Huazheng Wang, Zhe Gan, Xiaodong Liu, Jingjing Liu, Jianfeng Gao and Hongning Wang, Adversarial Domain Adaptation for Machine Reading Comprehension, EMNLP 2019, paper.

  • Yimin Jing, Deyi Xiong and Zhen Yan, BiPaR: A Bilingual Parallel Dataset for Multilingual and Cross-lingual Reading Comprehension on Novels, EMNLP 2019, paper.

  • Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin Wang and Guoping Hu, Cross-Lingual Machine Reading Comprehension, EMNLP 2019, paper.

  • Todor Mihaylov and Anette Frank, Discourse-Aware Semantic Self-Attention for Narrative Reading Comprehension, EMNLP 2019, paper.

  • Kyungjae Lee, Sunghyun Park, Hojae Han, Jinyoung Yeo, Seung-won Hwang and Juho Lee, Learning with Limited Data for Multilingual Reading Comprehension, EMNLP 2019, paper.

  • Qiu Ran, Yankai Lin, Peng Li, Jie Zhou and Zhiyuan Liu, NumNet: Machine Reading Comprehension with Numerical Reasoning, EMNLP 2019, paper.

  • Yiming Cui, Ting Liu, Wanxiang Che, Li Xiao, Zhipeng Chen, Wentao Ma, Shijin Wang and Guoping Hu, A Span-Extraction Dataset for Chinese Machine Reading Comprehension, EMNLP 2019, paper.

  • Daniel Andor, Luheng He, Kenton Lee and Emily Pitler, Giving BERT a Calculator: Finding Operations and Arguments with Reading Comprehension, EMNLP 2019, paper.

  • Tsung-Yuan Hsu, Chi-Liang Liu and Hung-yi Lee, Zero-shot Reading Comprehension by Cross-lingual Transfer Learning with Multi-lingual Language Representation Model, EMNLP 2019, paper.

  • Kyosuke Nishida et al., Multi-style Generative Reading Comprehension, ACL 2019, paper.

  • Alon Talmor and Jonathan Berant, MultiQA: An Empirical Investigation of Generalization and Transfer in Reading Comprehension, ACL 2019, paper.

  • Yi Tay et al., Simple and Effective Curriculum Pointer-Generator Networks for Reading Comprehension over Long Narratives, ACL 2019, paper.

  • Haichao Zhu et al., Learning to Ask Unanswerable Questions for Machine Reading Comprehension, ACL 2019, paper.

  • Patrick Lewis et al., Unsupervised Question Answering by Cloze Translation, ACL 2019, paper.

  • Michael Hahn and Frank Keller, Modeling Human Reading with Neural Attention, EMNLP 2016, paper.

  • Jianpeng Cheng et al., Long Short-Term Memory-Networks for Machine Reading, EMNLP 2016, paper.

专 · 知
专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询
点击“阅读原文”,了解使用专知,查看5000+AI主题知识资料
登录查看更多
3

相关内容

自然语言处理顶级会议
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【资源】文本风格迁移相关资源汇总
专知
13+阅读 · 2020年7月11日
自然语言生成资源列表
专知
17+阅读 · 2020年1月4日
图分类相关资源大列表
专知
11+阅读 · 2019年7月18日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
Arxiv
8+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2018年11月29日
CoQA: A Conversational Question Answering Challenge
Arxiv
7+阅读 · 2018年8月21日
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员