论文摘要:知识图谱嵌入是一种将符号实体和关系投影到连续向量空间的方法,越来越受到人们的重视。以前的方法允许对每个实体或关系进行单一的静态嵌入,忽略它们的内在上下文性质,即。,实体和关系可能出现在不同的图上下文中,因此,它们具有不同的属性。该工作提出了一种新的基于上下文的知识图谱嵌入(CoKE)范式,该范式考虑了这种上下文性质,并学习了动态的、灵活的、完全上下文化的实体和关系嵌入。研究了两类图的上下文:边和路径,它们都被表示为实体和关系的序列。CoKE采用一个序列作为输入,并使用Transformer编码器获得上下文化的表示。因此,这些表现形式自然地适应输入,捕捉实体的上下文含义和其中的关系。通过对各种公共基准的评估,验证了CoKE在链路预测和路径查询应答方面的优越性。在几乎所有情况下,它的性能始终比当前的技术水平更好,或者至少与之相当,特别是在H@10的路径查询应答方面提高了19.7%。
代码链接:[https://github.com/paddlepaddle/models /tree/develop/PaddleKG/CoKE](https://github.com/paddlepaddle/models /tree/develop/PaddleKG/CoKE)