Aspect-based Sentiment Analysis (ABSA) is a sentiment analysis task at fine-grained level. Recently, generative frameworks have attracted increasing attention in ABSA due to their ability to unify subtasks and their continuity to upstream pre-training tasks. However, these generative models suffer from the neighboring dependency problem that induces neighboring words to get higher attention. In this paper, we propose SynGen, a plug-and-play syntactic information aware module. As a plug-in module, our SynGen can be easily applied to any generative framework backbones. The key insight of our module is to add syntactic inductive bias to attention assignment and thus direct attention to the correct target words. To the best of our knowledge, we are the first one to introduce syntactic information to generative ABSA frameworks. Our module design is based on two main principles: (1) maintaining the structural integrity of backbone PLMs and (2) disentangling the added syntactic information and original semantic information. Empirical results on four popular ABSA datasets demonstrate that SynGen enhanced model achieves a comparable performance to the state-of-the-art model with relaxed labeling specification and less training consumption.
翻译:以外观为基础的感官分析(ABSA) 是一种微细微的情感分析任务。 最近, 突变框架由于能够将子任务及其连续性与上游培训前任务相统一, 在ABSA 中引起越来越多的关注。 然而, 这些基因模型由于相邻的依赖性问题而受到影响, 导致相邻词类得到更高关注。 在本文中, 我们提议SynGen, 是一个插件和剧本综合信息意识模块。 作为插件模块, 我们的SynGen 很容易应用到任何基因化框架主干部。 我们模块的关键洞察力是增加组合性诱导性偏差以引起注意, 从而将注意力引向正确的目标字词。 根据我们的知识, 我们是第一个将合成性信息引入相邻的ABSA 框架以引起更高关注的。 我们的模块设计基于两个主要原则:(1) 保持主干件PLM的结构性完整性,(2) 取消添加的合成信息和原始的语义信息。 我们模块的关键洞察力显示四个受欢迎的ABSA 模型模型显示, 与改良的改良型标签的改进性能比得更低的规格。</s>