We introduce a new numerical method for solving time-harmonic acoustic scattering problems. The main focus is on plane waves scattered by smoothly varying material inhomogeneities. The proposed method works for any frequency $\omega$, but is especially efficient for high-frequency problems. It is based on a time-domain approach and consists of three steps: \emph{i)} computation of a suitable incoming plane wavelet with compact support in the propagation direction; \emph{ii)} solving a scattering problem in the time domain for the incoming plane wavelet; \emph{iii)} reconstruction of the time-harmonic solution from the time-domain solution via a Fourier transform in time. An essential ingredient of the new method is a front-tracking mesh adaptation algorithm for solving the problem in \emph{ii)}. By exploiting the limited support of the wave front, this allows us to make the number of the required degrees of freedom to reach a given accuracy significantly less dependent on the frequency $\omega$. We also present a new algorithm for computing the Fourier transform in \emph{iii)} that exploits the reduced number of degrees of freedom corresponding to the adapted meshes. Numerical examples demonstrate the advantages of the proposed method and the fact that the method can also be applied with external source terms such as point sources and sound-soft scatterers. The gained efficiency, however, is limited in the presence of trapping modes.
翻译:我们引入了一种新的数字方法来解决时间调和声学散射问题。 主要焦点是平面波, 分散在平面波上, 物质差异性各异。 所提议的方法对任何频率都有效 $\ omega$, 但对于高频问题特别有效 。 它基于时间- 域法, 由三个步骤组成 :\ emph{ (i)} 计算一个合适的进港飞机波子, 在传播方向上提供紧凑支持; \ emph{ (ii) } 解决即将到来的飞机波子散射问题 。 主要的焦点是在时间范围内解决一个散射问题。 主要的焦点是平面波波波波波波 。 通过利用有限的支持, 使得我们能够让所需的自由度达到一个相当低的准确度, 以美元/ omega$ 。 我们还提出一个新的算法, 通过时间- 变换换, 时间- 以时间- Doma 溶解溶解解溶解溶解溶解解溶解解解解解解解解解, 3, 新的计算四价变形变形变形变形变形变形变形变形变形法 的外, 也将自由化法的精调解法 的外推磨变化为变法 度, 的内变化法 度的内变化的内变化 度也可以降低变化为变法, 的内变法 的内变法,, 的内变法的内变法的内变法 的内变法 的内变法的内变法 的内变法 。