Support vector machines (SVMs) are a well-established classifier effectively deployed in an array of classification tasks. In this work, we consider extending classical SVMs with quantum kernels and applying them to satellite data analysis. The design and implementation of SVMs with quantum kernels (hybrid SVMs) are presented. Here, the pixels are mapped to the Hilbert space using a family of parameterized quantum feature maps (related to quantum kernels). The parameters are optimized to maximize the kernel target alignment. The quantum kernels have been selected such that they enabled analysis of numerous relevant properties while being able to simulate them with classical computers on a real-life large-scale dataset. Specifically, we approach the problem of cloud detection in the multispectral satellite imagery, which is one of the pivotal steps in both on-the-ground and on-board satellite image analysis processing chains. The experiments performed over the benchmark Landsat-8 multispectral dataset revealed that the simulated hybrid SVM successfully classifies satellite images with accuracy comparable to the classical SVM with the RBF kernel for large datasets. Interestingly, for large datasets, the high accuracy was also observed for the simple quantum kernels, lacking quantum entanglement.
翻译:支持矢量机器( SVMs) 是一套在一系列分类任务中有效部署的完善的分类器 。 在这项工作中, 我们考虑扩展带有量子内核的经典 SVMs, 并将其应用于卫星数据分析。 演示了带有量子内核的 SVMs 的设计和实施。 这里, 象素使用一组参数化量子特征地图( 与量子内核有关) 绘制到希尔伯特空间 。 参数得到优化, 以最大限度地实现内核目标对齐。 量子内核被选中, 使得它们能够对许多相关特性进行分析, 同时能够用古型计算机模拟实时大规模数据集。 具体地说, 我们处理多谱卫星图像中的云探测问题, 这是在地面和机上卫星图像分析处理链中的关键步骤之一 。 在基准的 Landat-8 多谱数据集上进行的实验显示, 模拟的混合SVM 成功地对卫星图像进行了分类, 其精确性能与古典 SVM 相近, 同时能够用古典SVM 简单内核模拟的计算机模拟分析这些特性,, 用于实际的大规模数据库,, 也缺乏大量数据, 。