Modern depth sensors can generate a huge number of 3D points in few seconds to be latter processed by Localization and Mapping algorithms. Ideally, these algorithms should handle efficiently large sizes of Point Clouds under the assumption that using more points implies more information available. The Eigen Factors (EF) is a new algorithm that solves SLAM by using planes as the main geometric primitive. To do so, EF exhaustively calculates the error of all points at complexity $O(1)$, thanks to the {\em Summation matrix} $S$ of homogeneous points. The solution of EF is highly efficient: i) the state variables are only the sensor poses -- trajectory, while the plane parameters are estimated previously in closed from and ii) EF alternating optimization uses a Newton-Raphson method by a direct analytical calculation of the gradient and the Hessian, which turns out to be a block diagonal matrix. Since we require to differentiate over eigenvalues and matrix elements, we have developed an intuitive methodology to calculate partial derivatives in the manifold of rigid body transformations $SE(3)$, which could be applied to unrelated problems that require analytical derivatives of certain complexity. We evaluate EF and other state-of-the-art plane SLAM back-end algorithms in a synthetic environment. The evaluation is extended to ICL dataset (RGBD) and LiDAR KITTI dataset. Code is publicly available at https://github.com/prime-slam/EF-plane-SLAM.
翻译:现代深度传感器可以在几秒钟内生成大量的 3D 点,供之后的定位和映射算法处理。理想情况下,这些算法应该能够高效地处理大规模点云数据,因为使用更多的点意味着更多的可用信息。Eigen-Factors(EF)是一种新的算法,它使用平面作为主要几何原语来解决 SLAM 问题。为此,EF 通过齐次点的「求和矩阵」 $S$ 耗尽地计算所有点的误差,时间复杂度为 $O(1)$。EF 的解决方案非常高效:(i) 状态变量仅为传感器位姿 -- 轨迹,而平面参数则在闭合形式下预先估计;(ii) EF 交替优化使用牛顿-拉夫逊法,通过直接的解析梯度和海森矩阵计算,这最终是一个分块对角矩阵。由于我们需要在特征值和矩阵元素上进行微分,我们开发了一种在刚体变换流形 $SE(3)$ 上计算偏导数的直观方法,这种方法可以应用于需要某种复杂度的解析导数的其他非关联问题。我们在合成环境中评估了 EF 和其他最先进的平面 SLAM 后端算法。此外,我们还在 ICL 数据集(RGBD)和 LiDAR KITTI 数据集上进行了评估。代码公开可用于 https://github.com/prime-slam/EF-plane-SLAM。