Metric-based meta-learning is one of the de facto standards in few-shot learning. It composes of representation learning and metrics calculation designs. Previous works construct class representations in different ways, varying from mean output embedding to covariance and distributions. However, using embeddings in space lacks expressivity and cannot capture class information robustly, while statistical complex modeling poses difficulty to metric designs. In this work, we use tensor fields (``areas'') to model classes from the geometrical perspective for few-shot learning. We present a simple and effective method, dubbed hypersphere prototypes (HyperProto), where class information is represented by hyperspheres with dynamic sizes with two sets of learnable parameters: the hypersphere's center and the radius. Extending from points to areas, hyperspheres are much more expressive than embeddings. Moreover, it is more convenient to perform metric-based classification with hypersphere prototypes than statistical modeling, as we only need to calculate the distance from a data point to the surface of the hypersphere. Following this idea, we also develop two variants of prototypes under other measurements. Extensive experiments and analysis on few-shot learning tasks across NLP and CV and comparison with 20+ competitive baselines demonstrate the effectiveness of our approach.
翻译:以计量为基础的元学习是少见学习中事实上的标准之一。 它由代表学习和计量计算设计构成。 以前的作品以不同的方式构建类别表示, 从平均输出嵌入到共变和分布。 但是, 使用空间嵌入缺乏表达性, 无法强有力地捕捉类信息, 而统计复杂模型给度量设计带来了困难。 在这项工作中, 我们使用 Exor 字段( “ 区域” ) 来模拟从几分法角度到少见学习的类。 我们提出了一个简单而有效的方法, 被称为超镜原型( HyperProto ), 其类信息由具有两种可学习参数( 超镜中心与半径) 的动态尺寸的超镜表示。 从点到区域, 超镜比嵌入式设计要难得多。 此外, 我们用超镜原型( “ 区域” 区域” ) 进行基于度的分类比统计模型更方便, 我们只需要计算从数据点到超镜原型的表面( Hyperpher propre) 原型( Hyperphear) 原型的超镜( NP) 的超镜) 。 按照这个原型分析, 我们用另外的20个原型的模型进行测试的模型的模型的测试, 和实验, 并用其他的模型进行两次的模型的对比。