In [A. Neri, P. Santonastaso, F. Zullo. Extending two families of maximum rank distance codes], the authors extended the family of $2$-dimensional $\mathbb{F}_{q^{2t}}$-linear MRD codes recently found in [G. Longobardi, G. Marino, R. Trombetti, Y. Zhou. A large family of maximum scattered linear sets of $\mathrm{PG}(1,q^n)$ and their associated MRD codes]. Also, for $t \geq 5$ they determined equivalence classes of the elements in this new family and provided the exact number of inequivalent codes in it. In this article, we complete the study of the equivalence issue removing the restriction $t \geq 5$. Moreover, we prove that in the case when $t=4$, the linear sets of the projective line $\mathrm{PG}(1,q^{8})$ ensuing from codes in the relevant family, are not equivalent to any one known so far.
翻译:在论文 [A. Neri, P. Santonastaso, F. Zullo. Extending two families of maximum rank distance codes] 中,作者扩展了最近在 [G. Longobardi, G. Marino, R. Trombetti, Y. Zhou. A large family of maximum scattered linear sets of PG(1,q^n) and their associated MRD codes] 中发现的 $2$ 维 $\mathbb{F}_{q^{2t}}$ 线性最大秩距离(MRD)码的族群。同时,对于 $t \geq 5$,他们确定了该新族群中元素的等价类并给出了等价类中不同码的精确数量。在本文中,我们将对此进行完整的等价问题研究,消除 $t \geq 5$ 的限制。此外,我们证明了当 $t=4$ 时,从有关族群中获得的射线 PG(1,q^{8}) 上的线性集不等价于任何已知集合。