Finding multiple solutions of non-convex optimization problems is a ubiquitous yet challenging task. Most past algorithms either apply single-solution optimization methods from multiple random initial guesses or search in the vicinity of found solutions using ad hoc heuristics. We present an end-to-end method to learn the proximal operator of a family of training problems so that multiple local minima can be quickly obtained from initial guesses by iterating the learned operator, emulating the proximal-point algorithm that has fast convergence. The learned proximal operator can be further generalized to recover multiple optima for unseen problems at test time, enabling applications such as object detection. The key ingredient in our formulation is a proximal regularization term, which elevates the convexity of our training loss: by applying recent theoretical results, we show that for weakly-convex objectives with Lipschitz gradients, training of the proximal operator converges globally with a practical degree of over-parameterization. We further present an exhaustive benchmark for multi-solution optimization to demonstrate the effectiveness of our method.
翻译:找到非convex优化问题的多重解决方案是一项普遍而具有挑战性的任务。 大多数过去的算法要么应用多个随机初始猜想的单解优化方法,要么在找到的解决方案附近使用临时超律学进行搜索。 我们提出了一个端到端方法,以学习培训问题家庭最接近的操作者,以便通过对学习的操作员进行循环,从初始猜测中迅速获得多个本地微型数据,模拟快速趋同的准点算法。 所学的准点操作员可以进一步普及,以便在测试时恢复对未知问题的多重opima, 使对象探测等应用成为可能。 我们的配方中的关键要素是一个准度正规化术语, 提高我们培训损失的共性: 通过应用最近的理论结果, 我们证明,对于与Lipschitz梯度相比弱的convex目标, 对准点操作员的培训与实际的超标度结合了全球范围。 我们还为多解方法的优化提供了一个详尽的基准, 以证明我们的方法的有效性。