Flexible robots may overcome the industry's major problems: safe human-robot collaboration and increased load-to-mass ratio. However, oscillations and high dimensional state space complicate the control of flexible robots. This work investigates nonlinear model predictive control (NMPC) of flexible robots -- for simultaneous planning and control -- modeled via the rigid finite element method. Although NMPC performs well in simulation, computational complexity prevents its deployment in practice. We show that imitation learning of NMPC with neural networks as function approximator can massively improve the computation time of the controller at the cost of slight performance loss and, more critically, loss of safety guarantees. We leverage a safety filter formulated as a simpler NMPC to recover safety guarantees. Experiments on a simulated three degrees of freedom flexible robot manipulator demonstrate that the average computational time of the proposed safe approximate NMPC controller is 3.6 ms while of the original NMPC is 11.8 ms. Fast and safe approximate NMPC might facilitate the industry's adoption of flexible robots and new solutions for similar problems, e.g., deformable object manipulation and soft robot control.
翻译:软体机器人可以克服该行业的主要问题:安全的人-机器人协作和增加负荷-重量比。然而,振动和高维状态空间会使灵活机器人的控制复杂化。这项工作调查了弹性机器人的非线性模型预测控制(NMPC) -- -- 用于同时规划和控制 -- -- 以僵硬的限定元素方法为模型。虽然NMPC在模拟中表现良好,但计算复杂性使其无法实际部署。我们显示,以神经网络作为功能匹配器,模仿NMPC可以大幅改善控制器的计算时间,其成本是轻微性能损失,更重要的是,安全保障的丧失。我们利用一个安全过滤器,作为简单的NMPC,以恢复安全保障。模拟3度自由灵活机器人操纵器的实验表明,拟议的安全近似NMPC控制器的平均计算时间是3.6毫秒,而最初的NMPC为11.8毫秒。快速和安全近似近NMPC可能有助于该行业采用灵活的机器人,并为类似问题采用新的解决办法,例如软操纵机器人。