Credit assignment problem of neural networks refers to evaluating the credit of each network component to the final outputs. For an untrained neural network, approaches to tackling it have made great contributions to parameter update and model revolution during the training phase. This problem on trained neural networks receives rare attention, nevertheless, it plays an increasingly important role in neural network patch, specification and verification. Based on Koopman operator theory, this paper presents an alternative perspective of linear dynamics on dealing with the credit assignment problem for trained neural networks. Regarding a neural network as the composition of sub-dynamics series, we utilize step-delay embedding to capture snapshots of each component, characterizing the established mapping as exactly as possible. To circumvent the dimension-difference problem encountered during the embedding, a composition and decomposition of an auxiliary linear layer, termed minimal linear dimension alignment, is carefully designed with rigorous formal guarantee. Afterwards, each component is approximated by a Koopman operator and we derive the Jacobian matrix and its corresponding determinant, similar to backward propagation. Then, we can define a metric with algebraic interpretability for the credit assignment of each network component. Moreover, experiments conducted on typical neural networks demonstrate the effectiveness of the proposed method.
翻译:神经网络的信用分配问题指评价每个网络组成部分的信用到最终产出。对于一个未经培训的神经网络来说,处理神经网络的方法对参数更新和模拟培训阶段的革命作出了巨大贡献。这个在受过训练的神经网络上的问题很少引起注意,然而,它却在神经网络补丁、规格和核查方面发挥着越来越重要的作用。根据Koopman操作者理论,本文件从线性动态的角度对处理受过训练的神经网络的信用分配问题提出了另一种观点。关于神经网络作为亚动力序列的组成,我们利用神经网络的神经网络来捕捉每个组成部分的近像,尽可能准确地描述既定的绘图。为了避免在嵌入、构成和分解过程中遇到的辅助线性线性层的尺寸差异问题,称为最小线性尺寸的调整,是经过严格正式保证后精心设计的。随后,每个组成部分都被Koopman操作者所近似,我们从Jacobian矩阵及其相应的决定因素中得出类似后传的特征。然后,我们可以为每个网络的信用分配确定一个具有等值解释性的尺度。此外,我们还可以对每个网络的典型试验进行典型的神经系统的有效性进行。