We consider an optimal control problem constrained by a parabolic partial differential equation (PDE) with Robin boundary conditions. We use a well-posed space-time variational formulation in Lebesgue--Bochner spaces with minimal regularity. The abstract formulation of the optimal control problem yields the Lagrange function and Karush--Kuhn--Tucker (KKT) conditions in a natural manner. This results in space-time variational formulations of the adjoint and gradient equation in Lebesgue--Bochner spaces with minimal regularity. Necessary and sufficient optimality conditions are formulated and the optimality system is shown to be well-posed. Next, we introduce a conforming uniformly stable simultaneous space-time (tensorproduct) discretization of the optimality system in these Lebesgue--Boch\-ner spaces. Using finite elements of appropriate orders in space and time for trial and test spaces, this setting is known to be equivalent to a Crank--Nicolson time-stepping scheme for parabolic problems. Differences to existing methods are detailed. We show numerical comparisons with time-stepping methods. The space-time method shows good stability properties and requires fewer degrees of freedom in time to reach the same accuracy.
翻译:我们认为,最佳控制问题是受罗宾边界条件的偏差部分差异方程式(PDE)限制的最佳控制问题。我们在Lebesgue-Bochner空间中使用了精心安排的空间时间变异配方,且不那么固定。最佳控制问题的抽象配方自然地产生了Lagrange函数和Karush-Kuhn-Tucker(KKKT)条件。这导致Lebesgue-Bochner空间的配方和渐变方方方程的时时变配方,且规律性最小化。我们制定了必要和充分的最佳条件,优化系统也显示十分完善。接下来,我们采用了统一稳定的空间-时间(时序产品)同步化的最佳系统。使用空间适当命令和试验空间和试验空间时间的有限要素,已知这一设置相当于对抛物问题的Crank-Nicolson时间跨度计划。与现有方法的差别是详细的。我们用稳定度方法进行数字比较,以更精确的方式显示空间的准确性。我们要求用更精确的方法进行时间比较。