Proximal splitting-based convex optimization is a promising approach to linear inverse problems because we can use some prior knowledge of the unknown variables explicitly. An understanding of the behavior of the optimization algorithms would be important for the tuning of the parameters and the development of new algorithms. In this paper, we first analyze the asymptotic property of the proximity operator for the squared loss function, which appears in the update equations of some proximal splitting methods for linear inverse problems. The analysis shows that the output of the proximity operator can be characterized with a scalar random variable in the large system limit. Moreover, we investigate the asymptotic behavior of the Douglas-Rachford algorithm, which is one of the famous proximal splitting methods. From the resultant conjecture, we can predict the evolution of the mean squared error (MSE) in the algorithm for large-scale linear inverse problems. Simulation results demonstrate that the MSE performance of the Douglas-Rachford algorithm can be well predicted by the analytical result in compressed sensing with the $\ell_{1}$ optimization.
翻译:Proximal 分解法的 convex 优化是解决线性反问题的一个很有希望的方法,因为我们可以明确使用某些先前对未知变量的了解。 了解优化算法的行为对于调整参数和开发新算法非常重要。 在本文中, 我们首先分析平方损失函数的近距离操作员的无线属性属性属性属性, 这出现在某些线性反向问题分解方法的更新方程式中。 分析显示, 近距离操作员的输出可以使用大系统限制中一个星标随机变量来描述。 此外, 我们调查道格拉斯- 拉克福德算法的无线性属性行为, 这是著名的分解法之一。 从结果的预测, 我们可以预测大型线性反问题的算法中的平均正方差的演进。 模拟结果表明, 道格拉斯- 拉克福德算法的 MSE 性能可以通过以 $ell=1}优化的压缩遥感分析结果来很好地预测。