The paper considers the problem of modeling a univariate random variable. Main contributions: (i) Suggested a new family of distributions with quantile defined by a linear combination of some basis quantiles. This family of distributions has a high shape flexibility and covers commonly used distributions. (ii) Proposed an efficient estimation method by constrained linear regression (linearity with respect to the parameters). Various types of constraints and regularizations are readily available to reduce model flexibility and improve out-of-sample performance for small datasets . (iii) Proved that the estimator is asymptotically a minimum Wasserstein distance estimator and is asymptotically normal. The estimation method can also be viewed as the best fit in quantile-quantile plot. (iv) Case study demonstrated numerical efficiency of the approach (estimated distribution of historical drawdowns of SP500 Index).
翻译:本文考虑对单变量随机变量进行建模的问题。我们的主要贡献:(i) 提出了一个新的分布族,其中分位数由一些基分位数的线性组合定义。这个分布族具有高度的形状灵活性,覆盖了常用分布。(ii) 提出了一种有效的估计方法,即通过约束线性回归来估计。各种类型的约束和正则化可以降低模型的灵活性,并改善小数据集的外样本性能。(iii) 证明了估计器是渐进最小Wasserstein距离估计器,并且是渐进正常的。该估计方法还可以被看作是分位数-分位数图中的最佳拟合。(iv) 通过案例研究,演示了该方法的数值效率(估计了SP500指数的历史最大回撤的分布)。