The reduced-rank vector autoregressive (VAR) model can be interpreted as a supervised factor model, where two factor modelings are simultaneously applied to response and predictor spaces. This article introduces a new model, called vector autoregression with common response and predictor factors, to explore further the common structure between the response and predictors in the VAR framework. The new model can provide better physical interpretations and improve estimation efficiency. In conjunction with the tensor operation, the model can easily be extended to any finite-order VAR model. A regularization-based method is considered for the high-dimensional estimation with the gradient descent algorithm, and its computational and statistical convergence guarantees are established. For data with pervasive cross-sectional dependence, a transformation for responses is developed to alleviate the diverging eigenvalue effect. Moreover, we consider additional sparsity structure in factor loading for the case of ultra-high dimension. Simulation experiments confirm our theoretical findings and a macroeconomic application showcases the appealing properties of the proposed model in structural analysis and forecasting.
翻译:暂无翻译