Video-based person re-identification (ReID) is challenging due to the presence of various interferences in video frames. Recent approaches handle this problem using temporal aggregation strategies. In this work, we propose a novel Context Sensing Attention Network (CSA-Net), which improves both the frame feature extraction and temporal aggregation steps. First, we introduce the Context Sensing Channel Attention (CSCA) module, which emphasizes responses from informative channels for each frame. These informative channels are identified with reference not only to each individual frame, but also to the content of the entire sequence. Therefore, CSCA explores both the individuality of each frame and the global context of the sequence. Second, we propose the Contrastive Feature Aggregation (CFA) module, which predicts frame weights for temporal aggregation. Here, the weight for each frame is determined in a contrastive manner: i.e., not only by the quality of each individual frame, but also by the average quality of the other frames in a sequence. Therefore, it effectively promotes the contribution of relatively good frames. Extensive experimental results on four datasets show that CSA-Net consistently achieves state-of-the-art performance.


翻译:由于视频框中存在各种干扰,基于视频的人的重新识别(ReID)具有挑战性,因为视频框中存在各种干扰。最近采用的方法使用时间汇总战略处理这一问题。在这项工作中,我们提议建立一个新的“环境遥感注意网络”,改进框架特征提取和时间汇总步骤。首先,我们引入了“环境遥感频道注意”模块,该模块强调每个框架的信息渠道的反应。这些信息渠道的识别不仅参考了每个框架,而且还参考了整个序列的内容。因此,CSCA探索了每个框架的个性和该序列的全球背景。第二,我们提出了“环境遥感注意网络”模块,该模块预测了时间汇总的框架权重。在这里,每个框架的权重以对比的方式确定:即不仅根据每个框架的质量,而且根据其他框架的顺序的平均质量。因此,它有效地促进了相对良好的框架的贡献。关于四个数据集的广泛实验结果显示,CSA网络持续实现状态的性能。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
110+阅读 · 2020年3月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月24日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员