Object detection is essential to safe autonomous or assisted driving. Previous works usually utilize RGB images or LiDAR point clouds to identify and localize multiple objects in self-driving. However, cameras tend to fail in bad driving conditions, e.g. bad weather or weak lighting, while LiDAR scanners are too expensive to get widely deployed in commercial applications. Radar has been drawing more and more attention due to its robustness and low cost. In this paper, we propose a scene-aware radar learning framework for accurate and robust object detection. First, the learning framework contains branches conditioning on the scene category of the radar sequence; with each branch optimized for a specific type of scene. Second, three different 3D autoencoder-based architectures are proposed for radar object detection and ensemble learning is performed over the different architectures to further boost the final performance. Third, we propose novel scene-aware sequence mix augmentation (SceneMix) and scene-specific post-processing to generate more robust detection results. In the ROD2021 Challenge, we achieved a final result of average precision of 75.0% and an average recall of 81.0%. Moreover, in the parking lot scene, our framework ranks first with an average precision of 97.8% and an average recall of 98.6%, which demonstrates the effectiveness of our framework.


翻译:安全自主或辅助驾驶的天体检测是安全自主或辅助驾驶的关键。 以前的工程通常使用 RGB 图像或 LiDAR 指点云云来识别和定位自驾驶中的多个天体。 但是, 照相机往往在恶劣的驾驶条件下失灵, 例如天气恶劣或照明不亮, 而LIDAR 扫描仪太昂贵, 无法在商业应用中广泛部署。 雷达由于其坚固和低成本, 吸引了越来越多的注意力。 在本文中, 我们提议了一个场景觉察力雷达学习框架, 以便准确和稳健的天体探测。 首先, 学习框架包含雷达序列的场景类别的设置; 每个分支都优化了特定的场景类型。 其次, 提议了三个不同的 3D 自动编码建筑, 用于雷达天体探测和联合学习, 而三个不同的 3D 自动编码的建筑, 是在不同的建筑中进行三个不同的 3D 3D 自动编码仪式的建筑, 以进一步提升最后的性能。 第三, 我们提出了新的场景觉察测的组合( ScenMix) 和后处理结果。 在 ROD2021 挑战中, 我们的平均精度框架中, 我们的平均精确度框架 98 。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
VALSE Webinar 特别专题之产学研共舞VALSE
VALSE
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Anomalous Instance Detection in Deep Learning: A Survey
Arxiv
11+阅读 · 2019年4月15日
Scale-Aware Trident Networks for Object Detection
Arxiv
4+阅读 · 2019年1月7日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
相关资讯
VALSE Webinar 特别专题之产学研共舞VALSE
VALSE
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员