The aim of this paper is to show how rapidly decaying RBF Lagrange functions on the spheres can be used to create effective, stable finite difference methods based on radial basis functions (RBF-FD). For certain classes of PDEs this approach leads to precise convergence estimates for stencils which grow moderately with increasing discretization fineness.
翻译:本文的目的是说明如何利用RBF Lagrange在各领域迅速衰减的功能,根据辐射功能(RBF-FD)制定有效、稳定的有限差异法,对于某些类别的PDE,这一方法导致精确的Stencils趋同估计值,随着离散性美度的提高,这些螺旋体会适度增长。