We propose Riemannian preconditioned algorithms for the tensor completion problem via tensor ring decomposition. A new Riemannian metric is developed on the product space of the mode-2 unfolding matrices of the core tensors in tensor ring decomposition. The construction of this metric aims to approximate the Hessian of the cost function by its diagonal blocks, paving the way for various Riemannian optimization methods. Specifically, we propose the Riemannian gradient descent and Riemannian conjugate gradient algorithms. We prove that both algorithms globally converge to a stationary point. In the implementation, we exploit the tensor structure and design an economical procedure to avoid large matrix formulation and computation in gradients, which significantly reduces the computational cost. Numerical experiments on various synthetic and real-world datasets -- movie ratings, hyperspectral images, and high-dimensional functions -- suggest that the proposed algorithms are more efficient and have better reconstruction ability than other candidates.
翻译:我们建议使用Riemannian的预设算法,通过高环分解处理高发完成问题。 在高环分解中,对核心高发体中核心高发体的模型-2演化矩阵的产物空间开发了新的Riemannian 度量法。 构建该度量法的目的是通过它的对角区块来接近赫西安的成本功能,为各种里曼尼亚优化方法铺平道路。 具体地说,我们提出了里曼尼梯度下降法和里曼尼梯度算法。 我们证明这两种算法都是全球趋同到固定点的。 在实施过程中,我们利用高频结构并设计了一种经济程序,以避免在梯度中进行大型矩阵配制和计算,这大大降低了计算成本。 在各种合成和现实世界数据集(电影评级、超光谱图像和高维度功能)上进行的数值实验表明,拟议的算法比其他候选人更有效,而且重建能力也更好。</s>