项目名称: Riemann-Hilbert 方法的一致渐近分析及其应用研究
项目编号: No.11501215
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 林郁
作者单位: 华南理工大学
项目金额: 18万元
中文摘要: Riemann-Hilbert (RH)方法开创了正交多项式一致渐近分析的新途径,并取得很多深刻的研究成果。然而在非经典正交多项式系统中,传统 RH 方法的一致渐近分析不再适用,其渐近性质在临界点处表现出奇异行为。利用 RH 方法研究非经典正交多项式系统的渐近性质,需要发展基于 RH 方法的临界点一致渐近分析技术,这是现代渐近分析研究中的重要问题。本课题拟以非经典正交多项式系统的奇异行为研究为应用背景,以特殊函数为主要工具,发展基于RH方法的临界点一致渐近分析技术,以期获得三类重要正交多项式系统,聚点型临界点离散正交多项式,聚点型临界点混合权正交多项式及重合型临界点离散正交多项式一致渐近的发展。该课题研究有助于推动 RH 一致渐近方法、正交多项式理论及超越函数解析理论的深入发展。
中文关键词: Riemann-Hilbert方法;一致渐近;正交多项式;Painleve;函数;最速下降法
英文摘要: Riemann-Hilbert (RH) approach is a new method to study uniform asymptotic of orthogonal polynomials (OP), and it has been successful in deriving many nice results. However, for the non-classical OP, classical RH approach would be fail, and it was shown that the singular behaviour at the critical points. To study the asymptotic behaviour of the non-classical OP, we need to develop uniform asymptotic analysis for the critical points via RH approach, and this method plays an important rules in the modern asymptotic analysis. Our purpose in this project is to develop the uniform asymptotic analysis for critical point via RH approach by using the special functions, and study the uniform asymptotics of three important OP, such as discrete OP with accumulating critical points, mixed-type OP with accumulating critical points and discrete OP with coalescing critical points. This project would certainly contribute to the development of uniform RH approach, orthogonal polynomials, special function and its further applications.
英文关键词: Riemann-Hilbert approachie;uniform asymptotics;orthogonal polynomials;Painleve transcendents ;steepest-descend method