Depth completion deals with the problem of recovering dense depth maps from sparse ones, where color images are often used to facilitate this task. Recent approaches mainly focus on image guided learning to predict dense results. However, blurry guidance in image and unclear structure in depth still impede the performance of the image guided frameworks. Inspired by the popular mechanism of looking and thinking twice, we explore a repetitive design in our image guided network to gradually and sufficiently recover depth values. Specifically, the repetition is embodied in both the image guidance branch and depth generation branch. In the former branch, we design a repetitive hourglass network to extract discriminative image features of complex environments, which can provide powerful contextual instruction for depth prediction. In the latter branch, we introduce a repetitive guidance module based on dynamic convolution, in which an efficient convolution factorization is proposed to simultaneously reduce its complexity and progressively model high-frequency structures. Extensive experiments show that our method achieves state-of-the-art results on the KITTI benchmark and NYUv2 dataset.
翻译:深度完成涉及从稀薄的深度地图中回收密集的深度地图的问题, 彩色图像常常被用于促进这项任务。 最近的方法主要侧重于图像引导学习以预测密度结果。 但是, 图像的模糊性指导以及深度结构的模糊性仍然阻碍着图像引导框架的性能。 在受受流行的视觉和思维机制两次启发的情况下, 我们探索了图像引导网络中的重复性设计, 以逐渐和充分地恢复深度值。 具体地说, 重复性体现在图像指导分支和深度生成分支中。 在前一个分支中, 我们设计了一个重复性的沙漏网络, 以提取复杂环境的歧视性图像特征, 这可以为深度预测提供强有力的背景指导。 在后一个分支中, 我们引入了一个基于动态共变的重复性指导模块, 提议一个高效的演进因子化, 以同时降低其复杂性, 并逐步建模高频度结构。 广泛的实验显示, 我们的方法在 KITTI 基准 和 NYUV2 数据集上取得了最新的结果 。